A Unified Conformational Selection and Induced Fit Approach to Protein-Peptide Docking
نویسندگان
چکیده
Protein-peptide interactions are vital for the cell. They mediate, inhibit or serve as structural components in nearly 40% of all macromolecular interactions, and are often associated with diseases, making them interesting leads for protein drug design. In recent years, large-scale technologies have enabled exhaustive studies on the peptide recognition preferences for a number of peptide-binding domain families. Yet, the paucity of data regarding their molecular binding mechanisms together with their inherent flexibility makes the structural prediction of protein-peptide interactions very challenging. This leaves flexible docking as one of the few amenable computational techniques to model these complexes. We present here an ensemble, flexible protein-peptide docking protocol that combines conformational selection and induced fit mechanisms. Starting from an ensemble of three peptide conformations (extended, a-helix, polyproline-II), flexible docking with HADDOCK generates 79.4% of high quality models for bound/unbound and 69.4% for unbound/unbound docking when tested against the largest protein-peptide complexes benchmark dataset available to date. Conformational selection at the rigid-body docking stage successfully recovers the most relevant conformation for a given protein-peptide complex and the subsequent flexible refinement further improves the interface by up to 4.5 Å interface RMSD. Cluster-based scoring of the models results in a selection of near-native solutions in the top three for ∼75% of the successfully predicted cases. This unified conformational selection and induced fit approach to protein-peptide docking should open the route to the modeling of challenging systems such as disorder-order transitions taking place upon binding, significantly expanding the applicability limit of biomolecular interaction modeling by docking.
منابع مشابه
Effect of Biomolecular Conformation on Docking Simulation: A Case Study on a Potent HIV-1 Protease Inhibitor
Human immunodeficiency virus infection / acquired immunodeficiency syndrome (HIV/AIDS) is a disease pertained to the human immune system. Given its crucial role in viral replication, HIV-1 protease (HIV-1 PR) is a prime therapeutic target in AIDS therapy. In this regard, the dynamic aspects of ligand-enzyme interactions may indicate an important role of conformational variability in HIV-1 PR in...
متن کاملEffect of Biomolecular Conformation on Docking Simulation: A Case Study on a Potent HIV-1 Protease Inhibitor
Human immunodeficiency virus infection / acquired immunodeficiency syndrome (HIV/AIDS) is a disease pertained to the human immune system. Given its crucial role in viral replication, HIV-1 protease (HIV-1 PR) is a prime therapeutic target in AIDS therapy. In this regard, the dynamic aspects of ligand-enzyme interactions may indicate an important role of conformational variability in HIV-1 PR in...
متن کاملcNMA: a framework of encounter complex-based normal mode analysis to model conformational changes in protein interactions
MOTIVATION It remains both a fundamental and practical challenge to understand and anticipate motions and conformational changes of proteins during their associations. Conventional normal mode analysis (NMA) based on anisotropic network model (ANM) addresses the challenge by generating normal modes reflecting intrinsic flexibility of proteins, which follows a conformational selection model for ...
متن کاملDistinguishing induced fit from conformational selection.
The interactions between proteins and ligands often involve a conformational change in the protein. This conformational change can occur before (conformational selection) or after (induced fit) the association with ligand. It is often very difficult to distinguish induced fit from conformational selection when hyperbolic binding kinetics are observed. In light of a recent paper in this journal ...
متن کاملF3Dock: A Fast, Flexible and Fourier Based Approach to Protein-Protein Docking
Abstract Protein interactions, key to many biological processes, involves induced fit between flexible proteins which typically undergo conformational changes. Modeling this flexible protein-protein docking is an important step in drug discovery, structure determination and understanding structure-function relationships. In this paper, we present F3Dock, a Fast Flexible and Fourier based dockin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013